[Image via NASA/JPL-Caltech]On Earth, there have been arranged marriages for centuries. Even today, some places still do this. However, for the most part, the practice has died off. Yet for our cosmic planet and star friends, they do not get to choose. A planet known to science as Planet HD 106906b is pretty compelling. It’s 11 times bigger than Jupiter, our system’s biggest planet. It has also done something that few other planets have ever done without being labeled “rogue.” It has managed to distance itself from its parent star a super-massive 650 astronomical units, also known as AU.
[Image via Youtube.com]To understand this, just 1 AU is equivalent to 93 million Earth miles. Meaning 650AU would be 60,450,000,000 miles. Earth to Pluto is only 3 billion miles. Just think about that. The Sun to Pluto is roughly 39.5AU. Meaning, you’d need to travel from the Sun to Pluto nearly 16 times to get to the distance Planet HD is from its star. This planet alone is responsible for most of our planetary theories no longer holding ground. This planet should not exist based on our previously known theories. It was not created by a collapsed debris ring nor primordial discs of raw matter. Space anomalies like this may never be explained.
The Triple-Star System Luke Skywalker Would Be Jealous Of
[Image via PBS]Near the beginning of the first Star Wars film, we see Luke Skywalker come out of his relative’s home. We see him sit down with 2 suns behind him. All of us as younger people seeing that were instantly wowed by it. Of course, we now know if that was a real place then the human Skywalker would have burnt up long beforehand. However, could places like this exist? While not habitable for life like ours – they can and DO exist. It’s rare to see two stars close enough for that to happen, however. Yet one system has 3 stars! Known as KIC 2856960 and discovered by the Kepler Space Observatory, more than four years were put into studying this amazing system.
[Image via 24.hu]It is made of one large star and two dwarf stars. Kepler noticed it when four daily dips of light curves occurred, with each dwarf crossing by the other every six hours. They’d also notice a dip in light for 204 consecutive days that happened to be caused by the third star eclipsing. After years of analysis, scientists STILL have no answer for this. Coming up with the mass of the stars should have been simple too, but even it became harder to pin down. Some believe the answer to this mystery is that KIC has a fourth, hidden star. This would only add to space anomalies like this honestly.
[Image via Nerdist]Sometimes we do not realize how much protection we have out there in the universe. It truly does have a power we might never know the real extent of. One of those protectors is a plasma shield billions of miles from our Solar System’s center. It is there that you will see solar wind colliding with powerful cosmic rays at a boundary known as the Heliopause. In 2019, NASA’s twin Voyager probes happened to pass through the area as they entered interstellar space. As they did, scientists saw the Heliopause and found out that it was not some simple boundary.
[Image via Mitnews.com]Rather, it was a soupy plasma of sorts that deflects and dilutes the worst of all incoming radiation from other areas of the universe. It became known as a Plasma Shield and was said to possibly deflect about 70% of cosmic rays before it could enter our solar system. Some have referred to it as the “shield that guards the realms of man.” It is clearly incredible that we have something stopping these major rays. If we didn’t, perhaps our solar system would look far different. In fact, we may not even be alive. It is uncertain how it formed and how it accomplishes such an amazing feat. Making it a “must-add” to our space anomalies list.
[Image via Bio Pianeta]It’s pretty rare that astronomers find something so unique that they have to put it into an entirely new class all its own. Yet a discovery made in 2019 (reported in July 2020) was an exception. The astronomers discovered a bunch of weird, yet to be identified circles in space. Originally, the team that saw them actually thought their instruments were glitching. However, they knew it could not be a mistake after further study. These circles are visible only through radio light, with images being captured at one of the world’s most sensitive observatories. The circles were spotted by the Australian Square Kilometre Array Pathfinder (ASKAP) Telescope.
[Image via Vice.com]Of course, the ASKAP Telescope was formed to help scientists better understand the development of stars and galaxies. It clearly seems that it’s doing just that. These “rings” are said to not correspond with any known object. Thus, they have now been called Odd Radio Circles or ORCs by the Astrophysicist Ray Norris and his team at Western Sydney University. Some of the discs are limb-brightened with some containing a galaxy near the center. Each circle roughly measures out to about 1 arcminute across or 827 yards/756 meters. This is pretty small but still impressive. Yet the exact measurement is hard to know due to how far away these ORCs happen to be. Space anomalies like this are incredible, right?
[Image via DESY National Research Center]This particular discovery actually inspired our entire article. Recently, a cosmic gas cloud was said to have shown a mysterious gamma-ray heartbeat. It apparently syncs up perfectly with a neighboring black hole. It was an international team that discovered this cloud in the constellation of Aquila, the eagle. They used data from the Arecibo Observatory in Puerto Rico and NASA’s Fermi Gamma-Ray Space Telescope to accomplish this discovery. The team claims the cloud “beats” in rhythm with a small black hole roughly 100 lightyears away from it. A German team at the DESY National Research Center believes the black hole is connected to this mystery in some way.
[Image via scitechdaily.com]The aforementioned black hole is part of a Microquasar system referred to as SS 433. This system has a giant star that’s exactly 30 times as large as the mass of our own Sun. Microquasars are just smaller Quasars, but they can still eat up massive amounts of light. As the quasar and star orbit each other, the black hole is pulling in matter from the star, resulting in an accretion disk around the black hole itself. Yet part of the matter from this star does not drain into the black hole and shoots out high-speed particles and strong magnetic fields in jet-form, producing X-rays and Gamma Rays. It is thought that the Quasar gives the heartbeat. Yet it and the cloud are 100 lightyears apart, making this one of science’s current space anomalies in need of study.
[Image via NASA]Black Holes, on their own, are not exactly space anomalies. We know they exist and we know what they can do for the most part. However, even that can be called into question. Black Holes still surprise us from time to time. To understand exactly what a Black Hole actually is, you should first know that it involves time and gravity. We know from Albert Einstein’s Theory of General Relativity that gravity will often help us dictate time. Black Holes are a region of spacetime where the gravity is so impressively strong that absolutely nothing, even radiation & light, can escape. We found using Einstein’s equations that properly compact mass can deform spacetime, allowing the emergence of a Black Hole.
[Image via NASA]This usually tends to occur when massive stars collapse as they die off. Once one forms it can grow by absorbing more mass and even by merging with other black holes. Supermassive Black Holes are said to likely exist at the center of most galaxies. Yet this is roughly what we know. We have no idea what happens when you’re fully sucked in. We know that it will bend and break whatever it absorbs but we do not know what happens once something is fully sucked in. Does it come out somewhere else? Where does this mass absorbed actually go in the end? These are the questions science may never have a true answer to, making them essentially anomalies to us.
[Image via Sakkmesterke/Shutterstock.com]Today, most scientists agree that the Big Bang is how our universe formed. Still called the Big Bang “Theory” by some, it is not so much a theory any longer. The problem science has is simply how to explain it all. They will tell you most of the story, based on careful study of the universe for all of human history. However, one thing gets in the way. We just do not know how certain things existed to make the Big Bang a reality. This is heavily present when it comes to matter and antimatter. When the Big Bang happened, we should have an even amount of matter and antimatter.
[Image via Alamy stock photo]Scientists call it “Matter to Antimatter Asymmetry.” Yet this would be hard to accomplish because they are produced together at the same time. They are attracted to each other due to their differences in electric charges too. When they come in contact with each other, they explode into pure energy. During the Big Bang, this would have happened a lot. We also know without matter, our universe cannot exist and we do not have that even number. Something got in the way of the two matters colliding and exploding at some point. What that is will always be one of the biggest space anomalies ever. Yet this is just one of the many questions regarding how the universe formed that science may never know the answer to.
[Image via Live Science]Space anomalies like this guiding neutrino do not come along very often. In 2017, this high-energy neutrino struck the Earth. While neutrinos are not normally anything to write home about, the IceCube Neutrino Observatory in Antarctica saw something very interesting. It was the first one to arrive at Earth with enough information about its origin. Due to the unique opportunity this provided for scientists, they were excited to see what they could find out.
[Image via IceCube/NSF]Astronomers set their telescopes in the direction of the neutrino origin, in hopes of capturing more or even other incredible sights. They found that this neutrino came from a flaring blazer, which is a supermassive black hole at the very center of the Milky Way Galaxy. Not only that, but it was flung at Earth around 4 million years ago! Black holes are space anomalies in their own right, but this took the cake.
[Image via Universe Today]Quasars are really cool, and essentially space anomalies in their own right. As many people will know, massive objects are known for curving light. This can be an issue, especially when it comes to looking at something through a telescope. Such a problem existed with the Hubble Space Telescope in 1979 when they spotted a quasar from the early universe. A cool sight on its own, scientists wanted to use it to estimate the universe’s expansion rate.
[Image via Forance/Shutterstock.com]That was when they found out that it was expanding faster today than it was back in the early period. Of course, this finding actually disagreed with other measurements at the time. The double quasar phenomena is a good way to measure, but due to the uncertainty, it’s still an anomaly. Due to this, more studies are being done to further understand the universe’s rapid expansion. In fact, there are many reasons used, including our next space anomaly.
[Image via Hkeita/Shutterstock.com]When you hear scientists discuss the dark matter, don’t feel like they are saying something that you could never understand. They really don’t know how it works either. We’re serious…no one really does. This is why dark matter can refer to literally any substance that interacts mostly with gravity (and has visible matter). We know it makes up roughly 85% of the matter in the known universe.
[Image via Color4260/Shutterstock.com]Astronomers have also been able to also determine that astrophysical observations, especially gravitational ones, can be explained by dark matter. As laws of gravity are universal, when they differ from that…dark matter likely played a role. The reason it is called “dark” is that it does not interact with electromagnetic fields. Therefore, it does not absorb, reflect, or emit radiation; making it nearly impossible to detect.
[Image via Eric W. Elst of the Royal Observatory, Uccle, Belgium]Elst-Pizarro is often misunderstood, as people have trouble knowing if it is an asteroid or a comet. This is not a crazy problem, but most experts can see the difference. Yet Elst-Pizarro just felt like being different. Discovered in 1979, we did not really care about it a lot as it was within the asteroid field. By 1996, it was showing a tail like a comet. This led to many just assuming it was debris from a collision.
[Image via Pinterest]However, the tail’s brightness and even structure changed as time went on. No one seemed to understand the issue, with the most likely concept being that it could be an asteroid that collided with something that exposed an icy body. Which could then be melting away. However, no one knows why or really how this asteroid managed to become a comet. This is one of those space anomalies astronomers seemed to differ heavily on.
[Image via NASA Jet Propulsion Laboratory]For those unaware, neutron stars emit radio waves or at the very least, high-energy radiation like you might see with X-Rays. Yet in 2018, astronomers were struck with something they did not expect. They found a long stream of infrared light coming from a neutron star roughly 800 lightyears away from Earth. The discovery was incredible, yet also slightly terrifying as no one knew what this could be. They certainly could not explain it.
[Image via European Space Agency]This had never been seen before, making it hard for researchers to really explain. They did, however, propose that a disk of dust surrounding the neutron star could be the cause of it generating such a signal. The image above gives you a guide to what happened as soon as infrared was utilized and followed. As of now, they have yet to find out the true reason for the stream. Making it one of the most compelling space anomalies in recent memory.
[Image via Andrey_l/Shutterstock.com]Like dark matter, dark energy is one of the space anomalies we may never have a true answer for. What we do know is that dark energy is some form of unknown energy that affects our universe on incredibly large scales. Supernovae measurements help us find it, and helped us realize the universe was expanding at a much faster rate. Due to this discovery, we had answers for things beyond the normal forms of matter or energy that most understand.
[Image via Sakkmesterke/Shutterstock.com]Dark energy helped us explain cosmic events such as the Big Bang. We know it is the most likely reason the universe’s expansion has accelerated but we do not understand it all. Dark energy simply is too difficult to grasp for now, but that might not be the case for that much longer. As of 2020, research has been specifically aimed at looking further into dark energy. Perhaps we’ll know more about it one day.
[Image via Anne’s Astronomy News]If you want something to make you scratch your head, we invite you to check out the Red Rectangle Nebula. Located in the Monoceros Constellation 2,300 lightyears from Earth, you’ll see it. You’ll notice that two stars sit at the heart of the area, which is what ultimately gives us the image of it being a rectangle. Dust rings surround them, creating two cones of brightness. The Nebula here exhibits something rare known as an extended red emission, making dust glow red.
[Image via Alpha Codes]While we can understand how the rectangle came to pass, no one knows why the dust is red. Some have assumed it to be due to ultraviolet light from stars that randomly connected or interacted with carbon-rich molecules within the dust. But that is not proven. There are other areas of the universe with colored dust, yet for some reason, there is not a connection between their dust coloring and the Red Nebula.
[Image via NASA]Astronomers noticed odd ripples of dust in the Milky Way in 2009, making many feel a disruptive force was present. However, they could not determine at the time what caused the issue. By 2015, we had an answer. The cause was a dwarf galaxy orbiting the Milky Way, which is ever so slightly altering the motion of our galaxy with its gravitational pull. Scientists were only able to see it due to 4 bright stars around the galaxy.
[Image via Live Science]It would be too hard to see without it. Astronomers believe dark matter is the reason why we cannot truly see it very well. Given the name Galaxy X, the dwarf galaxy was unique at the time. This all changed when in 2016, we discovered Dragonfly 44, made of literally 99.99% dark matter. Along with Segue 1, the dwarfs have been spotted more and more. However, no one knows how they came to be. Moreover, what their role is with dark matter.
[Image via NASA]While the Milky Way is a relatively flat galaxy, others are different. Some like Ellipticals can look like a football. Hoag’s Object, however, operates differently. It has an old yellow core, surrounded by a beautiful ring of blue stars. However, there is nothing in the middle as if someone took a bite out of the middle of the thing! Yet another look makes it seems like some sort of space donut!
[Image via ESA/Hubble & NASA]The “Object” was spotted in 1950 by Arthur Hoag, its namesake. We have yet to see another galaxy of any kind that looks similar. Scientists have no conclusive reasoning as to how this formed. However, the theory is that a small galaxy came through and went right through it. This isn’t a bad theory, as the area spins very slowly, and a small version of the galaxy is hidden in itself.
[Image via Sky News]There is a place known as the South Atlantic Anomaly or SAA. It is a region of the Earth’s magnetic field known as Space’s version of the Bermuda Triangle. Astronauts have reportedly fallen asleep only to be shocked by an intense flash of light. It is thought that this is linked to Van Allen radiation belts, which are twin particles trapped in our planet’s magnetic field. This is quite an important issue to figure out, as we know that our magnetic field is not perfectly aligned with the Earth’s rotation.
[Image via Science Alert]That very well could lead to why this area roughly 125,000 miles above the South Atlantic causes such trouble. Even the International Space Station has trouble in the area, as computers stop working & astronauts experience cosmic flashes. On top of this, the Hubble Space Telescope cannot take any observations! If we are to do commercial space travel, we’ll need to figure out the issue with the SAA and how to work around it.